RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, MARCH 2021

Paper : V [Gr. A]

THIRD YEAR [BATCH 2018-21] PHYSICS (Honours)

Date : 13/03/2021 Time : 11 am - 1 pm

Full Marks : 50

Answer **any five** questions:

 $[5 \times 10]$

[3]

[3]

- a) State the postulate of equal a priori probability in equilibrium statistical mechanics. Determine and plot the phase-space trajectory of a particle freely falling under gravity. [1+2]
 - b) Consider a system of three spin $\frac{1}{2}$ particles each having magnetic moment μ in an external magnetic field H (along say, z-direction). Each particle may orient along or opposite to the external field.
 - i) List all possible microstates and macrostates.
 - ii) If the total energy of the system is known to be $+\mu$ H, what are the possible states and what is the probability that the spin of the first one will point up? [2+2]
 - c) Consider a one level system having energy $\epsilon = -k_BT \ln(V/V_0)$ where V_0 is a constant. Write down the partition function for this system and calculate the average pressure as a function of volume and temperature.
- 2. a) In what way does the Fermi-Dirac distribution differ from the Maxwell-Boltzmann distribution. [2]
 - b) Name the statistics (BE or FD) obeyed by each of the following particles:

proton, muon, phonon, α -particle, neutrino

c) In the domain of quantum statistics, derive the validity criterion of classical (M-B) approximation.

At the centre of the sun temperature T ~ 10^7 K, and concentration of electrons n~ 10^{32} m⁻³. Would it be valid to treat those electrons as a classical ideal gas?

[Given: rest mass of electron = 9.11×10^{-31} Kg, Planck's constant (h) = 6.62×10^{-34} Js, Boltzmann constant (k_B) = 1.38×10^{-23} JK⁻¹.] [3+2]

- a) Distinguish between ordinary vapour-liquid condensation and Bose-Einstein condensation.
 Physically explain the phenomena of B-E condensation.
 - b) Chemical potential of boson should always be negative justify this statement. Plot the approximate variation of the chemical potential with temperature. Find out an expression of B-E condensation temperature. [2+4]
- a) Prove that for a system at T > 0 K obeying F-D statistics, the probability that a level lying Δε below the Fermi level is unoccupied is the same as the probability of occupation of a level lying Δε above the Fermi level.

	b) Consider a non-interacting Fermi gas confined in a volume V at temperature T=0K. Derive expressions of (i) Fermi energy (E_F), (ii) Total energy of the system and (iii) the degeneracy pressure of the Fermi gas. [2+2+2]	
	 c) Estimate the Fermi energy of silver atom having atomic weight 107.87 and density 10.5 gm/cc. Assume that each silver atom denotes one conduction electron [2] 	
5.	 a) Consider a photon gas enclosed in a volume V and in equilibrium at temperature T. With the help of B-E statistics find out the energy density of the photon gas as a function of wavelength (λ). Depict the nature of variation. [5+1] 	
	b) Using above expression establish Wien's displacement law.	
	At a given temperature, $\lambda_{max} = 640$ nm, for a cavity. What will be the value of λ_{max} , if the temperature of the cavity walls is increased so that the rate of emission of spectral radiation is doubled? [2+2]	
6.	a) Set up Langevin's equation for one dimensional Brownian motion. Solve the equation with the help of reasonable approximations [Justify all those approximations]. Find the mean square displacement of the Brownian particle. What is the importance of the final result? [7]	
	b) Show that the variance of energy according to Maxwell-Boltzmann energy distribution law is $\frac{3}{2} \left(\frac{k_B}{T}\right)^2$. [3]	
7.	a) Write down the expression of canonical partition function Z. Find the internal energy and entropy in terms of Z. [1+3]	
	b) Write down the grand partition function. Derive the Fermi-Dirac and Bose-Einstein distribution from the grand partition function. [1+5]	
8.	A system with N non interacting particles has two energy levels at energies 0 and ϵ having degeneracy g_0 and g_1 respectively.	
	a) Write down the partition function. [1]	
	b) Calculate the average energy and entropy of the system. [3]	
	c) Calculate the specific heat of the system. Figure out the high temperature behaviour and the low temperature behaviour of specific heat. [4+2]	

[2]

- × -